

 Stephen Warner

 BIRMINGHAM CITY UNIVERSITY

Impossible Rescue.
Small Scale Video Game Development.

PDF Portfolio.

14thDecember 2019.

Amended for display purposes

Changes include removal of attribution table and file directory.

Build Video.

Links.

1

Table of Contents

Impossible Rescue MVP. ... 2

The Game Features. .. 2

Code Production. .. 3

Final Build Video. .. 7

Bibliography .. 7

2

Impossible Rescue MVP.
The game Impossible Rescue has the following requirements set for the minimum viable product

(MVP from now on):

● A single screen platform game.

● Basic player controls of left, right, jump, shoot, use, hack.

● Two weapon or ammunition types.

● Two enemy variations either in appearance, properties or behaviour.

● Progression mechanic requiring hacking to progress from each level.

● A life/death respawn system.

● Countdown timer for time-based levels.

● 12 balanced, fully tested playable levels.

● Coherent, consistent art style with usable clear UI.

● Target Visual which displays the art-style in-game.

● Fully detailed art style guide for the entire game.

● Working music and sound FX.

The Game Features.
For the end product:

● A female protagonist called Danielle along with her drone companion Shadow (Specialist

Hard-linked Android for Duty in Offshore Wars).

● 2D movement using a console controller. (Left, Right, Jump, Fire and Interact).

● Collectable items which help the player to progress.

● Interactable objects which contain story elements and background information.

● Hackable terminals that are a requirement to progress the game.

● Multiple enemy types, both static and non-static variants.

● Three story acts with unique aesthetics with act 3 being a backtrack of acts 1 and 2.

● 12 levels with the last level per act having a countdown limiter.

● Prologue and end of act cut scenes to further the story

● The overall story has a “movie” time of 60 minutes.

● A drone companion called Shadow, which can hack, stun and boost the player.

● 3 story beats which detail parts of the journey through the game

● Music and Sound effects for all three acts.

● Moving Platforms.

● A stun-gun weapon.

3

Code Production.
I was again tasked with implementing the interactables, which include:

● Danielle hackable terminals

● Shadow hackable terminals

● Danielle Sound Effects (Walking, Jumping, Damage, Landing) ● Level Music (All music from

levels 1 through 12).

● Server terminals which display story beats

● Danielle’s weapon unlock

● The President’s Daughter.

Aside from these assets I was also very involved with bug testing and resolution, along with the

production and extensive testing of levels 1 through 8 minus level 4.

During the initial first weeks of development there were troubles with collision due to a “better”

system being used which was different from how we were handling our collision detection during

pre-production. This caused a significant amount of time to be wasted early on in development due

to not knowing how this new system was supposed to function or how to interact with it as I was not

in charge of implementing the CIntermediateLayer (This is a class and was called the physics layer

very early in development and was later renamed). After having figured out the mechanics of the

new collision detection using the Physics Editor bitwise masks/categories I was able to rapidly finish

work on the terminals for Danielle and Shadow.

To pass the first stage of the production my team and I decided to use a band aid method to get the

objects in the scene to interact with each other, i.e. Shadow’s terminal to move a platform, Danielle’s

terminal to open a door, this was initially handled via CIntermediateLayer via pointers which get set

on creation of the assets, which was a horrible way to do things, however for the initial development

step it worked well. Later we held a short meeting to discuss how we were going to reform this

system so that it uses OGMO (Level Editor) and the GCFramework creation parameters for including

additional variables for creation, which could be linked together in code using the

CProgressionHandler class and a few other classes like CHackable to determine what would control

what and which assets would get linked. The variable we created in OGMO was able to handle

strings and integers which made the system very flexible and convenient.

Aside from the initial teething problems which occurred due to physics adjustments, there was one

other major aspect which I found to be irritating which was the audio management of Cocos2d.

There is very little documentation on how to correctly use the two audio engines (Simple &

Experimental) or what their primary differences are. This required a moderate amount of time and

also consulting other teams in regard to their experiences with the two audio engines.

I would have preferred to have made the terminals to inherit from a base class which held various

useful functions but due to time constraints I had to work very fast to add features or create entirely

new objects which I was not aware of at the start of the production phase, because now there is a

chunk of duplicated code which I would have rather avoided but due to time constrains was unable

to remedy.

4

Cocos leaves a lot to be desired in the audio management section along with the documentation of

the framework itself, even with the fairly substantial amount of research I had done on Cocos prior

to the start of the course. We found ourselves guessing at functionality and discovering issues like

memory leaking due to animations not being stopped before starting another animation, this wasn’t

discovered in pre-production likely due to the fact that there were very limited animations being

called or played, as the only animation state change called was from the terminals, this time round

we had the player constantly changing animation states which made the memory leak very obvious,

however it took a few days to figure out where it was occurring and also what solution to use to

alleviate or prevent it from being an issue in the future.

Our solution to this was to snap shot the memory and look at the differences, we eventually got lead

to the RunAction - RunAnimation (Functions) calls, after discovering that we had simply added a

line of code to call the StopAllActions on the sprite whenever a new RunAnimation/Loop was called.

Those were the majority of the difficulties aside from communication problems between

code/design/art teams which for the majority were resolved in time for the final build.

Since I was tasked with the implementation of a large portion of the levels from 1 to 8 and

discontinued levels 9 through 12p1, I had to spend a large portion of time working with our level

designer and ensuring the levels were playable and working to a decent standard, I unfortunately

did not have time to proof check the levels 12p2 through 12p5 as they were not assigned to the code

team for proofing.

Overall the project ended with a decent amount of success minus one error in the player animations

for the pre-release build, the standalone build doesn’t have the same issue.

Aside from the knowledge gained from the previous module and knowledge from my fellow

programmers, the only aspect I had to research into was the audio management which was done

using the Cocos2d-X Manual.

Code Annotations

The weapon pickup is super

simple, if the player collides

with the object SetWeapon to

true on the player and finally

destroy the weapon pickup

5

This was a super simple

class to handle the

president’s daughter.

There was a lot of room for

expanded functionality that

was never utilized.

I made these functions in the CTerminal, CServerTerminal,

To save me time when I had to either show or hide all of these elements, it

wasn’t necessary but it made the process much faster and require less lines.

6

This is how I did the player’s audio effects listed

previously.

The player makes use of the experimental

audio engine from Cocos.

Whereas the levels use the simple audio engine

from Cocos.

Above is a rather useful switch

statement which controls what

frame is displayed in the

StoryBeat Sprite depending on

what value is set in extra data in

the OGMO CreationParams.

Below is an example of extra

data being assigned to an

integer called m_IBeatNo.

7

Final Build Video.
Most of my tasks were expanding upon previous work, meaning the only real new

subject to learn was the audio management of Cocos2d-X

Bibliography

Cocos2d-x, 2019. Advanced Audio Functionality. [Online]

Available at: https://docs.cocos.com/cocos2d-x/manual/en/audio/advanced.html

[Accessed November 2019].

Cocos2d-x, 2019. Audio. [Online]

Available at: https://docs.cocos.com/cocos2d-x/manual/en/audio/ [Accessed

Novemember 2019].

Cocos2d-x, 2019. Collisions. [Online]

Available at: https://docs.cocos.com/cocos2d-x/manual/en/physics/collisions.html

[Accessed November 2019].

Cocos2d-x, 2019. Getting Started. [Online]

Available at: https://docs.cocos.com/cocos2d-x/manual/en/audio/getting_started.html

[Accessed November 2019].

Cocos2d-x, 2019. Manual. [Online]

Available at: https://docs.cocos.com/cocos2d-x/manual/en/ [Accessed

November 2019].

Cocos2d-x, 2019. Play Background music. [Online]

Available at: https://docs.cocos.com/cocos2d-x/manual/en/audio/playing.html [Accessed

November 2019].

Cocos2d-x, X. Y. S., 2018. AudioEngine Class Reference. [Online]

Available at: https://docs.cocos2d-

x.org/apiref/cplusplus/V3.17/d0/d75/classcocos2d_1_1experimental_1_1_audio_engine

.html [Accessed November 2019].

https://drive.google.com/file/d/1SpaNFpcqbEw2CURF_xqi6js7MLvF-DkC/view?usp=sharing

